Energy balance and acclimation to light and cold
Norman P.A. Huner, Gunnar Öquist and Fathey Sarhan

Changes in environmental conditions such as light intensity or temperature result in an imbalance between the light energy absorbed through photochemistry versus the energy utilized through metabolism. Such an energy imbalance is sensed through alterations in photosystem II excitation pressure, which reflects the relative reduction state of the photosystem. Modulation of this novel, chloroplastic redox signal either by excess light, cold temperature or by other environmental perturbations. The stress response subsequently leads to stable, characteristic by transient, physiological, biochemical and molecular fluctuations. By contrast, acclimation is a response induced by an environmental change that causes a phenotypic alteration with no change in genetic complement. However, acclimation is usually initiated by a stress response to an abrupt change in the environment that is characterized by transient, physiological, biochemical and molecular perturbations. The stress response subsequently leads to stable, long-term adjustments that reflect a developmental response to the new environmental condition. Thus, cold acclimation is a long-term developmental response to low temperature that results in the attainment of maximum freezing tolerance. This is estimated as the freezing temperature required to kill 50% of a plant population (LT50). The energy required to attain the cold-acclimated state is derived from photosynthesis.

The potential for an energy imbalance between photochemistry, electron transport and metabolism is exacerbated under conditions of either high light or cold temperatures, which lead to increased PSII excitation pressure (Box 1). On a time scale of minutes, organisms can acclimate in an attempt to compensate for exposure to high PSII excitation pressure by reducing energy transfer efficiency to PSII either by diverting energy from PSII to PSI through state transitions or by dissipating excess energy as heat by non-photochemical quenching (Fig. 1). On a longer time scale, photosynthetic acclimation to high PSII excitation pressure may occur as a consequence of a reduction in PSII antenna size. These mechanisms result in adjustments in the functional absorption cross-sectional area of PSII (σPSII), which would reduce photosynthetic efficiency measured as either the quantum yield of CO2 assimilation (Fv/Fm), the quantum yield of O2 evolution (Fv′/Fm′) or the quantum yield of O2 evolution (Fv′/Fm′). In addition, some plants reduce leaf angle relative to the incident radiation, alter leaf optical properties or change their position in the water column in the case of algae to reduce the incident photon flux. Alternatively, photoautotrophs could acclimate by increasing the number of components acting as electron-consuming sinks by elevating the levels of Calvin cycle enzymes, which would increase the capacity for CO2 assimilation or photosorption relative to electron transport. Clearly, in nature, photoautotrophs may exploit any one or a combination of these mechanisms to offset the potential ‘energy crisis’ during exposure to fluctuations in environmental conditions such as temperature and irradiance (Fig. 1). However, modulation of energy balance is not restricted to light and temperature. CO2 limitations associated with drought and deprivation of macronutrients such as nitrate might reduce sink capacity, which also leads to the over-reduction of PSII.

Changes in PSII excitation pressure are reflected in alterations in the redox state of PSII, which can be monitored in vivo by exploiting chlorophyll a fluorescence as a non-invasive probe. Photochemical fluorescence quenching can be used to estimate the proportion of PSII reaction centres that are ‘open’ (reflecting the relative oxidation state of QA), the first stable quinone electron acceptor of PSII reaction centres) or ‘closed’ (thought to reflect the relative reduction state of PSII). Thus, an estimate can be made of the relative PSII excitation pressure to which photoautotrophs are exposed. Although not providing an exact estimate of the reduction state of PSII, this fluorescence parameter does provide a useful estimate of relative changes in PSII excitation pressure of organisms exposed to changing environmental conditions.
Fig. 1. Photosynthetic transformation of light energy and mechanisms to maintain an energy balance. Primary photochemistry involves the absorption of sunlight by the pigments of the light-harvesting protein complex (LHC) and the transfer of this energy to the reaction centres of photosystem II (PSII) and photosystem I (PSI) to induce charge separation in 10^{-15} to 10^{-12} s. Coupled biochemical redox reactions transfer electrons from PSII through the inter-system electron-transport chain, consisting of plastoquinone (PQ), the cytochrome f/b complex (CYT f/b 6) and plastocyanin (PC), to PSI in about 10^{-3} s. Photosynthetic electron transport converts light into reducing power (NADPH) and, concomitantly, chemical potential energy (ATP), through chemiosmosis. These products are consumed through the reduction of C, N and S in the chloroplast, all of which occurs in seconds to minutes. These metabolic processes, in turn, are required for normal growth and development. Several mechanisms have evolved to ensure a balance between light energy absorbed versus energy utilized through electron transport and metabolism to protect PSII from over-excitation. Energy transfer from PSII to PSI (state transitions) and dissipation of excess absorbed energy as heat by non-photochemical quenching can occur in minutes. Over a longer time (hours to days), the following mechanisms occur: reduction of LHCII antenna size; alteration of PSII–PSI stoichiometry; stimulation of the rate of repair of the damaged D1 polypeptide of the PSII reaction centre; and stimulation of the capacity to utilize ATP and NADPH through metabolism to maintain high photochemical quenching of PSII excitation.

Minimal levels (3%) of the absorbed light energy are always lost through chlorophyll \(a \) fluorescence. The detection of modulated chlorophyll \(a \) fluorescence is exploited to estimate non-photochemical and photochemical quenching.

Box 1. Energy balance and photosystem II excitation pressure during acclimation to light and temperature

The rate of excitation of photosystem II (PSII) under light-limiting conditions can be estimated as:

\[
\sigma_{\text{exc}} = 1
\]

where \(\sigma_{\text{exc}} \) is the functional absorption cross-sectional area of PSII and \(I \) is the incident photon flux (units \(\text{mol photons m}^{-2} \text{s}^{-1} \)). Under light-saturating conditions, the rate of utilization of this excitation energy through electron transport and metabolism can be estimated as:

\[
\sigma_{\text{exc}} = 1
\]

where \(n \) is the number of components acting as sinks that consume electrons, \(\tau \) is the life-time and, hence, \(1/\tau \) is the turnover rate of these sinks. A balance between energy absorbed and energy utilized is attained when:

\[
\sigma_{\text{exc}} = 1 = n \cdot 1/\tau
\]

Consequently, any environmental condition that satisfies the following inequality would result in over-excitation of PSII (i.e. PSII excitation pressure):

\[
\sigma_{\text{exc}} > 1 = n \cdot 1/\tau
\]

Thus, an energy imbalance can result from exposure to excessive irradiance, \(I \), at constant temperature. Alternatively, an energy imbalance can occur as a consequence of exposure to low temperature at constant irradiance. Low temperature causes a reduction in \(\tau \). Thus, PSII excitation pressure can be created either by modulating irradiance, which affects temperature-insensitive photochemical processes \(Q_{10} = 1 \), or by modulating temperature, which affects temperature-dependent, biochemical processes \(Q_{10} = 2 \).
Absorbed light energy

\[[Z \text{ P}_{680} \text{ Pheo} \text{ Q}_A \text{ Q}_B] \]

\[(qP) \]

\[\text{PO} \text{ (oxidized)} \]

\[\text{PO} \text{ (reduced)} \]

\[\text{CYT} \text{ B} \text{ (reduced)} \]

\[\text{CYT} \text{ B} \text{ (oxidized)} \]

\[\frac{1}{2} \text{O}_2 + 2e^- + 2H^+ \]

\[\text{H}_2\text{O} \]

\[[Z \text{ P}_{680} \text{ Pheo} \text{ Q}_A \text{ Q}_B] \]

\[(l - qP) \]

\[\text{P}_{680} \]

\[\text{D1; P}_{680} \]

\[\text{the reaction centre chlorophyll} \]

\[\text{a; Pheo; pheophytin;} \]

\[\text{Q}_A, \text{quione A} \]

\[\text{Q}_B, \text{quione B} \]

\[\text{the secondary quinone electron acceptor).} \]

\[\text{The transfer of absorbed light energy to ‘open’ PSII reaction centres causes}
\]

\[\text{anthocyanin.} \]

\[\text{Pinus banksiana}. \]

\[\text{Pinus sylvestris} \]

\[\text{LHCII is}
\]

\[\text{reorganized into large pigment–protein aggregates containing both chlorophyll}
\]

\[\text{and zeaxanthin that appear to dissipate excess energy as heat} \]

\[\text{Because non-photochemical quenching appears to play a major role}
\]

\[\text{in the protection of the photosynthetic apparatus from severe}
\]

\[\text{photodamage; evergreens appear to adjust } \theta_{\text{PSII}} \text{ in response to the}
\]

\[\text{imbalance in energy budget that occurs during the winter months.} \]

\[\text{Other temperate conifers such as } \text{P. banksiana} \text{ exhibit ‘purpling’}
\]

\[\text{caused by the accumulation of anthocyanin in epidermal cells}
\]

\[\text{in response to a complex interaction of photoperiod, low}
\]

\[\text{temperatures and irradiance} \]

\[\text{Accumulation of anthocyanins appears}
\]

\[\text{to protect the needles against photoinhibition of PSII when}
\]

\[\text{exposed to light and cold temperatures through a simple screening}
\]

\[\text{effect that reduces the absorbed photon flux.} \]

\[\text{This is consistent with the suggestion that anthocyanins are a natural sun screen}
\]

\[\text{against both UV-B radiation and high visible irradiance} \]

\[\text{Evergreen plants} \]

\[\text{In the Northern hemisphere, the leaves of}
\]

\[\text{evergreen plants typically develop and expand during the warm spring and summer}
\]

\[\text{months and are subsequently retained and maintained during the winter months}
\]

\[\text{when all growth ceases. The reversible}
\]

\[\text{interconversion of the light-harvesting}
\]

\[\text{xanthophyll pool size and an accumulation of}
\]

\[\text{zeaxanthin can occur over a period of days or months in response to extensive periods}
\]

\[\text{of low, winter temperatures, when light-}
\]

\[\text{saturated photosynthetic rates as well as}
\]

\[\text{photosynthetic efficiency are depressed.}
\]

\[\text{This result in a sustained capacity to dissipate excess light as heat by non-photo-}
\]

\[\text{chemical quenching mechanisms} \]

\[\text{Cereals} \]

\[\text{In contrast to evergreens, cold-tolerant winter rye and wheat must}
\]

\[\text{grow and develop at low temperatures for maximum cold tolerance}
\]

\[\text{and successful winter survival in temperate climates. Thus, these}
\]

\[\text{plant species must maintain the capacity for active photosynthesis}
\]

\[\text{during prolonged exposure to low, non-freezing temperatures during}
\]

\[\text{the cold acclimation period with minimal changes in pigment}
\]

\[\text{composition. Somersalo and Krause} \]

\[\text{were the first to report that cold acclimation results in an increased tolerance to photoinhibition,}
\]

\[\text{a result that was subsequently confirmed for winter rye and wheat} \]

\[\text{This was not because of changes in leaf optical properties, but was}
\]

\[\text{associated with minimal changes in thylakoid membrane microviscosity based on differential scanning calorimetry and electron}
\]

\[\text{spin resonance measurements} \]

\[\text{In contrast to the alpine arctic species } \text{Oxyria digyna} \text{, the increased tolerance to photoinhibition}
\]
in wheat and rye is not caused by an increased capacity to repair damaged PSII reaction centres or increased non-photochemical quenching, but rather an increased capacity to keep the quinone \(Q_o\) oxidized (i.e. high photochemical quenching) due to an elevated photosynthetic capacity with no change in photosynthetic efficiency. The potential to keep \(Q_o\) oxidized and the potential to increase the photosynthetic capacity as a consequence of cold acclimation are correlated with both tolerance to photoinhibition and the capacity of winter rye and wheat cultivars to develop maximum freezing tolerance.

The increased capacity of rye and wheat to keep \(Q_o\) oxidized appears to be a consequence of a cold acclimation-induced stimulation of mRNA and protein levels associated with the major regulatory enzymes of photosynthetic carbon metabolism: Rubisco, stromal and cytosolic fructose bisphosphatase and sucrose phosphate synthase. This is reflected in an increased enzyme activity as well as an increased activation state of these important regulatory enzymes. This is translated into increased growth rates under potentially photoinhibitory conditions. Thus, the elevated sucrose levels normally associated with cold acclimation do not result in the repression of photosynthetic gene expression in Arabidopsis, rye or wheat, contrary to current models related to sucrose regulation of plant gene expression. It appears that increased cold tolerance and tolerance to photoinhibition may be the result of a ‘reprogramming’ of carbon metabolism in these species.

Green algae

Similar to the evergreens, low-temperature acclimation of the unicellular green algae, *Chlorella vulgaris* and *Dunaliella salina*, results in a depression of the capacity for CO$_2$ assimilation and photosynthetic efficiency, calculated on a per cell basis, concomitant with an increase in the total xanthophyll pool size as well as a lower epoxidation state of the xanthophyll cycle pigments due to the conversion of violaxanthin to zeaxanthin. However, in contrast to evergreens and both winter rye and wheat, cold acclimation of these green algae is associated with: a six-fold lower chlorophyll content per cell; a lower abundance of Lhc-b mRNA as well as Lhc polypeptides; and an increased level of the carotenoid-binding protein, Lhcb. These algae appear unable to up-regulate carbon metabolism and thus are unable to adjust the number of electron-consuming sinks during growth and development at low temperature. As a consequence, algal cultures grown at low temperature exhibited a distinctive yellow colour (Fig. 4a). The repression in the accumulation of Lhc mRNA and Lhc polypeptides is not due to sucrose suppression, since the capacity for sucrose accumulation is depressed upon cold acclimation of *Chlorella vulgaris*.

Cultures grown at low temperature exhibited a three- to four-fold increased tolerance to photoinhibition. Thus, in contrast to either evergreens or wheat and rye, these green algae alter their pigmentation significantly in response to growth at low temperature or high growth irradiance. This reflects a reduction in light-harvesting capacity coupled with an increased capacity to dissipate excess light non-photchemically as heat through zeaxanthin and possibly lutein, which results in a decrease in \(\phi_{	ext{can}}\).

Cyanobacteria

In contrast to chloroplasts, the cyanobacterium *Synechococcus* sp. PCC 7942 possesses three homologous genes for the D1 protein of PSII reaction centres, designated *psbA*, *psbB* and *psbC*. The *psbA* gene encodes form 1, designated D1-1; *psbB* and *psbC* encode form 2, designated D1-2. Mutants expressing D1-2 exhibit greater tolerance to photoinhibition than wild-type cells that express D1-1. Recently, it has been shown that exposure of wild-type *Synechococcus* sp. PCC 7942 to low temperature induces a transient exchange of the D1-1 form for the D1-2 form of the PSII reaction centre polypeptide, resulting in an increased tolerance to photoinhibition.

There is a consensus that a rapid cycle of damage and repair of the D1 polypeptide during photoinhibition is an intrinsic feature of PSII (Ref. 1). A decrease in membrane lipid unsaturation inhibits subsequent recovery from photoinhibition through an impairment of the D1 repair process in cyanobacteria. This appears to be due to an inability to process the newly synthesized D1 protein, resulting in the accumulation of inactive PSII reaction centres. Moreover, exposure to cold enhances thylakoid fatty acid unsaturation, and increases the tolerance of cyanobacteria to low-temperature photoinhibition and chilling injury. Thus, cyanobacteria appear to respond to photoinhibition by adjusting the capacity to repair PSII (Fig. 1). It may be that changes in membrane fluidity act as a primary signal for changes in temperature in cyanobacteria.

Acclimation to cold and high light intensity

Photosynthetic adjustment of *Chlorella* to growth at low temperature and moderate irradiance is comparable to cells grown at high light with respect to pigmentation, gas exchange and sensitivity to
It may be that exposure to high excitation pressure initiates a signal transduction pathway from the chloroplast to the nucleus that represses Lhcb and concomitantly depresses Cbr gene expression. This leads to low levels of Lhcb, but high levels of Cbr precursor polypeptides synthesized in the cytoplasm – these are subsequently processed during transport into the chloroplast and inserted into the thylakoid membrane.

Thus, photoautotrophs sense imbalances in the energy budget through changes in the relative reduction state of PSII (i.e., changes in PSII excitation pressure). However, PSII cannot be the primary redox sensor that regulates nuclear Lhcb and Cbr expression in Chlorella and Dunaliella. Rather, the changes in the relative reduction state of PSII probably reflect the redox status of a component further downstream of PSII, which is consistent with the proposal that either the thylakoid plastoquinone pool or the CYT b/f complex acts as the chloroplast redox sensor for the regulation of photosynthesis-related genes.

Cold, light and freezing tolerance

The photosynthetic response and tolerance to photoinhibition of cold-acclimated wheat and rye are also due to growth at elevated PSII excitation pressure. However, the modulation of PSI excitation pressure by changes in irradiance or temperature influences events beyond photosynthesis and sensitivity to photoinhibition. In contrast to the Wc120 family of cold-acclimation genes, expression of the nuclear-encoded cold acclimation gene Wc19 is increased by lowering the temperature with no change in the induction of the short, compact growth habit associated with cold hardening. All responses are due to changes in PSI excitation pressure. In contrast to the Wc120 family of cold-acclimation genes, expression of the nuclear-encoded cold acclimation gene Wc19 is increased by lowering the temperature with no change in the induction of the short, compact growth habit associated with cold hardening. All responses are due to changes in PSI excitation pressure. In contrast to the Wc120 family of cold-acclimation genes, expression of the nuclear-encoded cold acclimation gene Wc19 is increased by lowering the temperature with no change in the induction of the short, compact growth habit associated with cold hardening. All responses are due to changes in PSI excitation pressure.
fact, supersede the genetic potential of the organism to exhibit its maximum freezing tolerance. This has important implications not only for genetic engineering of cold tolerant and freezing-resistant plants but also for research focused on the elucidation of stress-tolerance mechanisms.

Although maximum freezing tolerance (LT50) is altered by changing either the growth temperature or the growth light (Fig. 5d), LT50 is not modulated by PSII excitation pressure. It is dependent on both light and temperature in an independent but additive manner (Fig. 5d). Thus, cold acclimation and freezing tolerance may well be the result of complex interactions of low temperature, light and chloroplastic redox poise, as reflected by the sensitivity to PSII excitation pressure. The transduction pathways associated with each of these signals probably interact not only with each other but also synergistically with other important signal transduction pathways – involving phytochrome, sugar sensing, protein phosphorylation and dephosphorylation, Ca²⁺ and plant growth regulators – to elicit the appropriate physiological response.

Recent results indicate that chromosome 5A of wheat carries the regulatory gene or genes that not only control the expression of the gene families correlated with freezing tolerance but also genes controlling plant morphology. Perhaps a locus or loci on chromosome 5A represents a master regulator that co-ordinates the expression of genes associated with cold acclimation, freezing tolerance and plant morphology. If this is the case, clearly this nuclear-encoded, master regulator must be sensitive to PSII excitation pressure and hence chloroplastic redox poise.

Photosynthesis: a dual role?

Any change in environmental conditions such as temperature, light, nutrient status, CO₂ concentrations or water availability can potentially cause a metabolic energy imbalance which, through metabolic feedback loops, will affect chloroplast metabolism and hence modulate PSII excitation pressure (Fig. 6). However, plants do not sense environmental changes only through modulation of PSII excitation pressure. Clearly, all organisms must be able to sense specific changes in temperature as well as perturbations of other environmental conditions. Nevertheless, in nature, changes in environmental parameters such as temperature rarely occur independently of other factors such as irradiance. Thus, caution must be exercised in interpreting data obtained from an experimental design that does not include controls to allow one to distinguish between responses caused by the specific environmental perturbation of interest from those due to changes in PSII excitation pressure.

In addition to the traditional role of photosynthesis in energy transduction, the redox state of the photosynthetic apparatus might also act as an environmental sensor by detecting energy imbalances between photochemistry and biochemistry (see Box 1). As initially proposed by Fujita and co-workers and subsequently supported by others, a putative photosynthetic redox signal might initiate a transduction pathway that coordinates photosynthesis-related gene expression and, hence, photosynthetic acclimation. In addition, this photosynthetic redox sensing and signalling mechanism might also influence such diverse processes as cold acclimation, plant morphology (Fig. 6) and cyanobacterial differentiation. Evidence for an intrachloroplast redox sensing pathway has recently been provided with the identification of the ferredoxin-thioredoxin system as a critical component of redox regulation of chloroplast translation. Although signalling between the chloroplast and the nucleus has been investigated for some time, the nature of the chloroplastic signal (the elusive ‘plastid factor’) and the signal transduction pathway have yet to be elucidated. However, it has recently been shown that Mg-protoporphyrin IX acts as a plastid factor in the signal transduction pathway involved in the light induction of nuclear heat-shock genes. Thus, the process of photosynthesis appears to exert a broad influence on diverse molecular, physiological and developmental processes, consistent with the notion of a ‘grand design of photosynthesis’.

Dedication

This article is dedicated to Dr Fergus D.H. Macdowall, mentor and friend.

Acknowledgements

Much of the work described in this review is taken from the doctoral theses of Denis P. Maxwell and Gordon R. Gray. We are grateful to Drs Leo Savitch, Alex Ivanov and Marianna Krol for their help in the preparation of this article. Research in the labs of research is supported by the Canadian Institute for Scientific and Technical Research (the CIHR), the Natural Sciences and Engineering Research Council of Canada (the NSERC) and the National Institutes of Health (the NIH).
N.P.A.H. and F.S. was supported by the Natural Sciences and Engineering Research Council of Canada and Fonds pour la Formation de Chercheurs et l’Aide à la Recherche. Research in G.O.’s lab was supported by the Swedish Natural Science Research Council. G.O. and N.P.A.H. acknowledge the financial support of the Swedish Foundation for International Cooperation in Research and Higher Education.

References

20 Strand, A. et al. (1997) Development of Arabidopsis thaliana leaves at low temperature releases the suppression of photosynthesis and photophysiological expression despite the accumulation of soluble carbohydrates, Plant J. 12, 605-614
34 Jung, J.C., Liou, P. and Sheen, J. (1997) Histo2assine as a sugar sensor in higher plants, Plant Cell 9, 5–19

Norman Huner* is at the Dept of Plant Sciences, University of Western Ontario, London, Canada. N6A 5B7; Gunnar Öquist is at the Dept of Plant Physiology, Umeå University, Umeå, S-901 87 Sweden; Fathey Sarhan is at the Dept of Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Canada H3C 3P8

*Author for correspondence (tel +1 519 679 2111; fax +1 519 661 3935; e-mail huner@uwaterloo.ca)